Paradoxes in R. Dedekind's and G. Frege's Systems

Jana Roztočilová


This paper deals with two arithmetical systems -namely with the system presented by R. Dedekind and the system established by G. Frege - and with paradoxes there occurring - namely with the Burali-Forti paradox (the first formulation of modern paradox at all), the Cantor´s paradox and the Russell´s paradox. The main purpose is to show in what way are these paradoxes similar and that although these paradoxes occur in different systems, they have common features. On the basis of studying these systems and paradoxes and also ways out from these paradoxes, the author reached the conclusion that the investigated paradoxes arise from the same source, namely the problem of nonhierarchization.

In addition, the Appendix of this article presents the Burali-Forti paradox in the form that shows the historically authentic way of derivation of this paradox. There is also a short exposition of Russell´s paradox in the Appendix. It shows the paradox not only in the form presented by B. Russell but also in the G. Frege´s formulation.


The Burali-Forti paradox; Cantor’s paradox; Russell’s paradox; Dedekind; Frege; Russell

Full Text:

PDF (Czech)


Show references Hide references

Burali-Forti, C. (1967): A question on transfinite numbers. In: Heijenoort, J. (ed.): From Frege to Gödel. Cambridge, Masachusetts: Harvard University Press, 104 – 112. Dostupné na: .

Cantini, A. (2012): Paradoxes and Contemporary Logic. In: The Stanford Encyclopedia of Philosophy (Winter 2012 Edition) [online]. Stanford: The Metaphysics Research Lab, 2012, last modified on 27. 11. 2012 [cit. 15. 6. 2014]. Dostupné na: .

Cantor, G. (1967): Letter to Dedekind. In: Heijenoort, J. (ed.): From Frege to Gödel. Cambridge, Masachusetts: Harvard University Press, 113 – 117. Dostupné na: .

Dedekind, R. (1932): Was sind und was sollen die Zahlen? In: Fricke, R., Noether, E., Ore Ö. (eds.): Richard Dedekind Gesammelte mathematische Werke. Braunschweig: Friedrich Viewegh und Sohn, 335 – 391. Dostupné na: .

Frege, G. (1879): Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle a. S.: Louis Nebert. Dostupné na: .

Frege, G. (1893): Grundgesetze der Arithmetik. Jena: Verlag von Hermann Pohle. . Dostupné na: .

Frege, G. (1903): Grundgesetze der Arithmetik; Bd. 2. Jena: Verlag von Hermann Pohle. . Dostupné na: .

Gillies, D. (1982): Frege, Dedekind and Peano on the foundations of Arithmetic. Assen: Van Gorcum. Dostupné na: .

Kneale, W., Kneale, M. (1962): The Development of Logic. Oxford: Oxford University Press. Dostupné na: .

Kolman, V. (2002): Logika Gottloba Frega. Praha: Filosofia. Dostupné na: .

Kolman, V. (2008): Filosofie čísla. Praha: Filosofia. Dostupné na: .

Priest, G. (1994): The Struture of the Paradoxes of Self-Reference. In: Mind, New Series, Vol. 103, No. 409, 25-34. Dostupné na: .

Russell, B. (1908): Mathematical Logic as Based on the Theory of Types. In: American Journal of Mathematics, Vol. 30, No. 3 (Jul., 1908), 222-262. Dostupné na: .

Russell, B. (1967): Letter to Frege. In: Heijenoort, J. (ed.): From Frege to Gödel. Cambridge, Masachusetts: Harvard University Press, 126 – 127. Dostupné na: .

Published by the Department of Philosophy, Faculty of Arts, Masaryk University, Brno, Czech Republic.
ISSN: 1212-9097