Hybrid microporous and mesoporous organosilicate covalent polymers with high porosity

Publikace nespadá pod Filozofickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.

Autoři

KEJÍK Martin MORAVEC Zdeněk BARNES Craig E PINKAS Jiří

Rok publikování 2017
Druh Článek v odborném periodiku
Časopis / Zdroj MICROPOROUS AND MESOPOROUS MATERIALS
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
Doi http://dx.doi.org/10.1016/j.micromeso.2016.11.012
Obor Anorganická chemie
Klíčová slova Sol-gel; Non-hydrolytic condensation; Acetic acid elimination; Microporous; Mesoporous; Hybrid; Organosilicates
Popis A novel non-hydrolytic sol-gel synthesis of hybrid organosilicates is reported allowing control of micro/mesoporous character of the xerogels by variation of the silicon precursor. The polycondensation reaction of silicon(IV) acetate, Si(OAc)(4), with 1,3,5-trihydroxybenzene (THB) in dry dioxane at 100 degrees C produces acetic acid and highly porous amorphous aromatic organosilicate xerogels. Their apparent BET surface areas are as high as 990 m(2) g(-1) and the total pore volume is 0.843 cm(3) g-1. These materials are mostly microporous with a low abundance of mesopores and an average pore size of 3.5 nm. The reaction of HSi(OAc)(3) with THB produced a novel mesoporous material with properties superior to xerogels obtained from Si(OAc)(4). The BET surface area of 933 m(2) g(-1) is retained upon heating and average pore size reached 6.0 nm. The total pore volume of 1.36 cm(3) g(-1) is the highest value achieved in porous aromatic organosilicates so far and is comparable to values typical for 3D covalent organic networks (COFs). The materials are stable up to 400-500 degrees C but they are sensitive to hydrolysis in moist air. The reactions of other silicon precursors (MeSi(OAc)(3) and (BuSi)-Bu-t(OAc)(3)) and larger polyphenol connectors, 1,3,5-tris(4 '-hydroxyphenyl)benzene (THPB), 2,4,6-tris(4 '-hydroxyphenyl)-1,3,5-triazine (THPTA), and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP), produced materials with less satisfactory properties. (C) 2016 Elsevier Inc. All rights reserved.
Související projekty: