Compressed FastText Models for Czech Tagger


This publication doesn't include Faculty of Arts. It includes Faculty of Informatics. Official publication website can be found on


Year of publication 2022
Type Article in Proceedings
Conference Proceedings of the Sixteenth Workshop on Recent Advances in Slavonic Natural Languages Processing, RASLAN 2022
MU Faculty or unit

Faculty of Informatics

Keywords model compression; FastText; embedding evaluation; Czech tagger
Description We are building a new tagger for the Czech language that uses two models: the FastText model for word embeddings and a neural network that assigns tags to tokens. In the deployment, we are struggling with model sizes. Since the model size is a common obstacle in various tasks, several compression methods exist. Authors of the methods often claim that the impact on model performance is minimal. However, the evaluation is done on the two tasks the word embeddings are evaluated on: word analogy and word similarity. No information is provided for the evaluation of subsequent tasks. In this paper, we have trained a FastText word embedding model on more recent data. We retrained the tagger with the same parameters using compressed and uncompressed variants of the original FastText model and the new one. After comparing the results, we can see quantization methods are suitable, possibly together with pruning, without significant impact on the tagger performance. The precision dropped by 0.1 percentage point only in quantized models. All tested compression methods reduce the model size 10–100 times.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.