Solutions of half-linear differential equations in the classes Gamma and Pi

Publikace nespadá pod Filozofickou fakultu, ale pod Pedagogickou fakultu. Oficiální stránka publikace je na webu muni.cz.

Autoři

ŘEHÁK Pavel TADDEI Valentina

Rok publikování 2016
Druh Článek v odborném periodiku
Časopis / Zdroj Differential and Integral Equations
Fakulta / Pracoviště MU

Pedagogická fakulta

Citace
Obor Obecná matematika
Klíčová slova half-linear differential equation; positive solution; asymptotic formula; regular variation; class Gamma; class Pi
Popis We study asymptotic behavior of (all) positive solutions of the non\-oscillatory half-linear differential equation of the form $(r(t)|y'|^ {\alpha-1}\sgn y')'=p(t)|y|^{\alpha-1}\sgn y$, where $\alpha\in(1,\infty)$ and $r,p$ are positive continuous functions on $[a,\infty)$, with the help of the Karamata theory of regularly varying functions and the de Haan theory. We show that increasing resp. decreasing solutions belong to the de Haan class $\Gamma$ resp. $\Gamma_-$ under suitable assumptions. Further we study behavior of slowly varying solutions for which asymptotic formulas are established. Some of our results are new even in the linear case $\alpha=2$.
Související projekty: