Leaching of mercury from seal carcasses into Antarctic soils

Logo poskytovatele
Logo poskytovatele


Publikace nespadá pod Filozofickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.


Rok publikování 2017
Druh Článek v odborném periodiku
Časopis / Zdroj Environmental Science and Pollution Research
Fakulta / Pracoviště MU

Přírodovědecká fakulta

www http://link.springer.com/article/10.1007/s11356-016-7879-3
Doi http://dx.doi.org/10.1007/s11356-016-7879-3
Obor Analytická chemie, separace
Klíčová slova Mercury; Methylmercury; Seal; Soil; Antarctica
Popis More than 400 seal mummies and skeletons are now mapped in the northern part of James Ross Island, Antarctica. Decomposing carcasses represent a rare source of both organic matter and associated elements for the soil. Owing to their high trophic position, seals are known to carry a significant mercury body burden. This work focuses on the extent of the mercury input from seal carcasses and shows that such carcasses represent locally significant sources of mercury and methylmercury for the environment. Mercury contents in soil samples from the surrounding areas were determined using a single-purpose AAS mercury analyzer. For the determination of methylmercury, an ultra-sensitive isotopic dilution HPLC-ICP-MS technique was used. In the soils lying directly under seal carcasses, mercury contents were higher, with levels reaching almost 40 ug/kg dry weight of which methylmercury formed up to 2.8 % of the total. The spatial distribution implies rather slow vertical transport to the lower soil layers instead of a horizontal spread. For comparison, the background level of mercury in soils of the investigated area was found to be 8 ug/kg dry weight, with methylmercury accounting for less than 0.1 %. Apart from the direct mercury input, an enhanced level of nutrients in the vicinity of carcasses enables the growth of lichens and mosses with accumulative ability with respect to metals. The enhanced capacity of soil to retain mercury is also anticipated due to the high content of total organic carbon (from 1.6 to 7.5 %). According to the results, seal remains represent a clear source of mercury in the observed area.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.