On the Shannon Capacity of Triangular Graphs

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

ASHIK Mathew Kizhakkepallathu PATRIC R. J. Östergard POPA Alexandru

Rok publikování 2013
Druh Článek v odborném periodiku
Časopis / Zdroj Electronic Journal of Combinatorics
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www http://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i2p27
Obor Teorie informace
Klíčová slova cube packing; Shannon capacity; tabu search; zero-error capacity
Popis The Shannon capacity of a graph $G$ is defined as $c(G)=\sup_{d\geq 1}(\alpha(G^d))^{\frac{1}{d}},$ where $\alpha(G)$ is the independence number of $G$. The Shannon capacity of the Kneser graph $\kg{n}{r}$ was determined by Lov\'{a}sz in 1979, but little is known about the Shannon capacity of the complement of that graph when $r$ does not divide $n$. The complement of the Kneser graph, $\kgc{n}{2}$, has the $n$-cycle $C_n$ as an induced subgraph, whereby $c(\kgc{n}{2}) \geq c(C_n)$, and these two families of graphs are closely related in the current context as both can be considered via geometric packings of the discrete $d$-dimensional torus of width $n$ using two types of $d$-dimensional cubes of width $2$. Bounds on $c(\kgc{n}{2})$ obtained in this work include $c(\kgc{7}{2}) \geq \sqrt[3]{35} \approx 3.271$, $c(\kgc{13}{2}) \geq \sqrt[3]{248} \approx 6.283$, $c(\kgc{15}{2}) \geq \sqrt[4]{2802} \approx 7.276$, and $c(\kgc{21}{2}) \geq \sqrt[4]{11441} \approx 10.342$.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.