Extremal solutions to a system of n nonlinear differential equations and regularly varying functions

Publikace nespadá pod Filozofickou fakultu, ale pod Pedagogickou fakultu. Oficiální stránka publikace je na webu muni.cz.

Autoři

ŘEHÁK Pavel MATUCCI Serena

Rok publikování 2015
Druh Článek v odborném periodiku
Časopis / Zdroj Mathematische Nachrichten
Fakulta / Pracoviště MU

Pedagogická fakulta

Citace
Doi http://dx.doi.org/10.1002/mana.201400252
Obor Obecná matematika
Klíčová slova Positive extremal solutions; asymptotic representation; quasilinear systems; Emden-Fowler systems; elliptic systems; regular variation
Popis The strongly increasing and strongly decreasing solutions to a system of n nonlinear first order equations are here studied, under the assumption that both the coefficients and the nonlinearities are regularly varying functions. We establish conditions under which such solutions exist and are (all) regularly varying functions, we derive their index of regular variation and establish asymptotic representations. Several applications of the main results are given, involving n-th order nonlinear differential equations, equations with a generalized Laplacian, and nonlinear partial differential systems.
Související projekty: