Which O-commutative Basic Algebras Are Effect Algebras
| Autoři | |
|---|---|
| Rok publikování | 2010 |
| Druh | Článek v odborném periodiku |
| Časopis / Zdroj | International Journal of Theoretical Physics |
| Fakulta / Pracoviště MU | |
| Citace | |
| www | http://dx.doi.org/10.1007/s10773-009-0221-9 |
| Obor | Obecná matematika |
| Klíčová slova | Basic algebra Commutative basic algebra O-commutative basic algebra Lattice effect algebra |
| Popis | By a basic algebra is meant an MV-like algebra (A,+,neg,0) of type (2, 1, 0) derived in a natural way from bounded lattices having antitone involutions on their principal filters. We show that (i) atomic Archimedean basic algebras for which the operation + is o-commutative are effect algebras and (ii) atomic Archimedean commutative basic algebras are MV-algebras. This generalizes the results by Botur and Halas on finite commutative basic algebras and complete commutative basic algebras. |
| Související projekty: |